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SUMMARY

Meta-analysis is a powerful approach to combine evidence from multiple studies to make

inference about one or more parameters of interest, such as regression coefficients. The validity of

the fixed effect model meta-analysis depends on the underlying assumption that all studies in the

meta-analysis share the same effect size. In the presence of heterogeneity, the fixed effect model

incorrectly ignores the between-study variance and may yield false positive results. The random

effect model takes into account both within-study and between-study variances. It is more

conservative than the fixed effect model and should be favored in the presence of heterogeneity. In

this paper, we develop a noniterative method of moments estimator for the between-study

covariance matrix in the random effect model multivariate meta-analysis. To our knowledge, it is

the first such method of moments estimator in the matrix form. We show that our estimator is a

multivariate extension of DerSimonian and Laird’s univariate method of moments estimator, and

it is invariant to linear transformations. In the simulation study, our method performs well when

compared to existing random effect model multivariate meta-analysis approaches. We also apply

our method in the analysis of a real data example.
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1. Introduction

Meta-analysis has been widely used to increase precision and power by combining studies

(Cohn and Becker, 2003). Assuming that the effect to be estimated is the same in all studies,

the fixed effect meta-analysis is often successfully used to combine the studies and obtain

the point estimate for the effect size and its standard error. However, the underlying

assumption of equal effect sizes of the fixed effect model may be violated (DerSimonian and
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Laird, 1986). Different studies may come from different populations, use different protocols

and have different levels of confounding or effect modifying variables. Thus, the studies

may not share a common effect size of interest. In the presence of heterogeneity, the fixed

effect model underestimates the standard error of the point estimate by ignoring the

between-study variance. False positive findings may be generated when the fixed effect

model is inappropriately used.

The random effect model allows both within-study and between-study variances, and is

more conservative than the fixed effect model in declaring significance of the effect size of

interest. In the presence of heterogeneity, the random effect model provides more

appropriate standard error of the point estimate and better confidence interval than the fixed

effect model. When meta-analyzing a single parameter of interest, one can estimate the

between-study variance by using the EM algorithm (Dempster et al., 1977) or other iterative

methods; a noniterative method of moments estimator has also been proposed (DerSimonian

and Laird, 1986).

Meta-analysis has also been applied to two or more correlated effect estimates (Raudenbush

et al., 1988), such as regression coefficients (Becker and Wu, 2007). Analogous to the

univariate case in which the inverse variance is used as the weight, the inverse of the

covariance matrix is the weight in the multivariate fixed effect model. Random effect

models have also been proposed to incorporate the between-study covariance matrix

(Berkey et al., 1998, van Houwelingen et al., 2002, Riley et al., 2007). However, the

iterative procedure is often computer intensive and may not reach convergence. Recently, an

extended DerSimonian and Laird’s method of moments estimator was proposed to solve the

between-study covariance matrix (Jackson et al., 2010). Though this method is a

noniterative approach, it requires calculating each element of the matrix separately, and it is

not invariant to reparametrization of effect sizes.

In this paper, we proposed a novel method of moments estimator for the between-study

covariance matrix in the multivariate meta-analysis. It is also a multivariate extension of

DerSimonian and Laird’s univariate method of moments estimator. To our knowledge, this

is the first noniterative estimator for the between-study covariance matrix in the matrix

form. It is invariant to linear transformations. We perform a simulation study to compare our

method with the restricted maximum likelihood (REML) method (Jennrich and Schluchter,

1986) and Jackson’s multivariate DerSimonian and Laird’s method. We also apply the three

random effect methods as well as the fixed effect approach to a real data example.

2. Fixed Effect Multivariate Meta-Analysis

Suppose we are interested in meta-analyzing p correlated effects from k studies. To estimate

the true effect sizes
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we need effect estimates and their covariance matrix from individual studies. For study i (1

≤ i ≤ k), we denote the effect estimates

and their covariance matrix Σi.

To meta-analyze vectors b1, b2, …, bk and get a summary estimate, we need generalized

least squares (GLS) methods instead of ordinary least squares (OLS) methods, because the

variances of effect estimates from different studies are unequal. We first stack the k vectors

to get a long vector with length kp

Assuming that the k studies are uncorrelated, we make a blockwise diagonal matrix

This is the covariance matrix of vector b.

We assume the following model holds:

where W is a stack of k identity matrices of size p × p, and we assume that the error e

follows a multivariate normal distribution with means 0 and covariance matrix Σ, which is

the covariance matrix of vector b.

The fixed effect model summary estimator (Raudenbush et al., 1988, Becker and Wu, 2007)

is

with covariance estimator
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The null hypothesis of homogeneity

can be tested using the homogeneity test statistic

Q is a scalar. Under the null hypothesis of no heterogeneity, it asymptotically follows a chi-

square distribution with (k − 1)p degrees of freedom (Becker and Wu, 2007).

3. Random Effect Multivariate Meta-Analysis

Similarly to the fixed effect model, we assume

We assume that the error e follows a multivariate normal distribution with means 0 and

covariance matrix Σ. The random effect vector

where δi (1 ≤ i ≤ k) follows a multivariate normal distribution with means 0 and covariance

matrix T. Thus the covariance matrix of vector b is

Σi (1 ≤ i ≤ k) is the within-study covariance matrix for study i defined above, Ik×k is the k ×

k identity matrix, T is the between-study covariance matrix. The symbol ⊗ denotes the

Kronecker product of two matrices.

The random effect model summary estimator is
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with covariance estimator

The crucial step for the random effect approach is to estimate the between-study covariance

matrix T. In this paper we use the following three methods. In all the methods, the values of

the covariance matrices Σi (1 ≤ i ≤ k) are fixed at the obtained study-specific estimates.

3.1 Restricted maximum likelihood method

The REML estimation can be performed by maximizing

where

under the constraint that T is positive semi-definite (Jackson et al., 2010, Jennrich and

Schluchter, 1986).

3.2 Jackson’s multivariate DerSimonian and Laird’s method

Jackson’s multivariate DerSimonian and Laird’s method calculates each entry of T
separately (Jackson et al., 2010). Let

where

and bu(i) is the ith (1 ≤ i ≤ p) element in the vector bu (1 ≤ u ≤ k), Σu(i,j) is the element on row

i (1 ≤ i ≤ p) and column j (1 ≤ j ≤ p) of Σu (1 ≤ u ≤ k). Let
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then

is the element on row i (1 ≤ i ≤ p) and column j (1 ≤ j ≤ p) of T̂.

While the calculation is generally faster than REML, Jackson’s method requires calculating

p2 weighted means b̃i[j] as intermediates for a p × p matrix T̂, and it is not invariant to

reparametrization of effect sizes.

3.3 A novel multivariate DerSimonian and Laird’s method

Let

where Σj, bj (1 ≤ j ≤ k) are defined above, β̂F is the fixed effect estimate defined above. Then

A symmetric method of moments estimator for T is

See Web Appendix A for the derivation. A very nice property of our estimator is that it is

invariant to linear transformation (Web Appendix B).
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When p = 1, this estimator T̂ is scalar and is equal to DerSimonian and Laird’s estimator

(Web Appendix C).

In the presence of heterogeneity, the homogeneity test statistic Q no longer follows a chi-

square distribution. However, its expectation is a function of the true between-study

covariance matrix T (Web Appendix D).

Since T is a covariance matrix, it should be positive semi-definite. While we can do the

maximization under the constraint that T is positive semi-definite for the REML method, we

generally have no guarantee that Jackson’s or our method of moments estimator would be

positive semi-definite, especially when heterogeneity is low. A remedy for this issue is

discussed in Web Appendix E, which we adopted in all the analyses for this paper. Jackson

et al. used the same strategy in their paper (Jackson et al., 2010).

4. Simulation

4.1 Simulation design

To compare the performance of the REML method, Jackson’s multivariate DerSimonian and

Laird’s method (MDLJ) and Chen’s multivariate DerSimonian and Laird’s method (MDLC)

developed in this paper, we conducted simulation studies in the context of bivariate meta-

analysis. We performed all the calculation and analysis in R-2.9.2 (R Development Core

Team, 2009).

We considered 10 studies with different sample sizes. 100 between-study variances were

generated from a chi-square distribution with 1 df, and values less than 0.016 or greater than

2.7 were discarded (corresponding approximately to the 10% and 90% quantiles of 1 df chi-

square distribution). Then we randomly chose 2 sets of 10 variances out of the remaining

values, sorted and paired them. The smallest pair was assigned to the first study as the

within-study variances of the two effects and so on until the largest pair was assigned to the

last study. The within-study correlation was set to 0.2 or 0.8 for all 10 studies.

We followed the procedure by Higgins and Thompson to calculate the between-study

variances (Jackson et al., 2010, Higgins and Thompson, 2002). Since the variances for both

outcomes were simulated from the same population, we first calculated the typical within-

study variance

where  was generated as discussed above. For this parameter setting we have .

Then we computed the between-study variances using
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where  and  are the proportions of marginal variation in the first and second effects due

to heterogeneity, respectively. We considered 9 scenarios, in which each of  and  was set

to 0.2, 0.5 or 0.8 to simulate low, moderate and high heterogeneity for each effect. T11 and

T22 are the between-study variances for the first and second effects. The between-study

correlation was set to 0.2 or 0.8 to calculate the covariance.

For each study i (1 ≤ i ≤ 10), we generated the effect size vector bi from a bivariate normal

distribution with mean 0 and covariance matrix Σi + T, where Σi is the within-study

covariance matrix and T is the between-study covariance matrix.

4.2 Simulation results

We summarized the simulation results for between-study correlation 0.2 and within-study

correlation 0.2 in Table 1. We only presented results for the first effect and the covariance,

since the second effect shows similar results. Columns 7 – 9 show the bias, mean squared

error for the first summary effect estimator β̂1 and 95% confidence interval coverage for the

first effect size. The confidence interval was constructed as β̂1 ± t0.025,9SE (β̂1) (Follmann

and Proschan, 1999). Columns 10 – 13 show the bias of the between-study variance

estimator for the first effect T̂11 and that of the between-study covariance estimator T̂12, and

their corresponding mean squared errors. Column 14 shows the proportion of the between-

study covariance matrix estimate lying on the boundary of its parameter space: either at least

one of the variance estimates is 0, or the absolute value of the correlation coefficient is 1.

Since the between-study covariance matrix after the Web Appendix E correction when

necessary is always positive semi-definite, this column also indicates the percentage of the

between-study covariance matrix not being positive definite, that is, its minimum eigenvalue

is equal to 0. To allow for rounding errors, we defined being less than 10-8 as being equal to

0.

We can see from Table 1 that all three methods give very similar results, and our new

approach is closer to Jackson’s method rather than the REML. This is not surprising because

REML is a likelihood-based iterative method, while the other two are method of moments.

In all scenarios REML gives more boundary-valued between-study covariance matrix

estimates than the other non-iterative methods.

Bias T̂11 is generally greater than 0, because we pull back negative eigenvalues to 0 when

fixing covariance matrix estimates that are not positive semi-definite, we somehow bias the

diagonal elements upwards. We can see that as the heterogeneity increases, this bias

generally decreases, and the proportion of boundary-valued between-study covariance

matrix estimates also decreases. This is consistent with our prior knowledge that fixed effect

models are usually preferred when heterogeneity is low and random effect models are more

appropriate when heterogeneity is high. Simulation results for other correlation coefficient

settings are summarized in Web Tables 1 – 3.
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4.3 Additional simulation study

We performed 6 additional simulation studies to investigate the effect of the number of

studies on the results. We set  and  to be 0.5, between-study and within-study correlation

coefficients to be 0.2, and let the number of studies change from 10 to 5, 20, 50, 100, 200

and 500. Since all three methods give similar results, only results using our new method are

shown in Figure 1 and Web Table 4. As the number of studies increases, mean squared

errors of β1̂, the summary effect estimate for the first effect, and T̂11, the between-study

variance estimate for the first effect decrease, which is reasonable because the large-sample

properties of estimators in a meta-analysis depend on the number of studies. As the number

of studies goes to infinity, mean squared errors converge to 0.

We can also see that as the number of studies increases, the proportion of the between-study

covariance matrix estimate lying on the boundary of its parameter space (matrix with

minimum eigenvalue 0) decreases dramatically, even though the heterogeneity is only

moderate. As we fix fewer and fewer covariance matrices that are not positive semi-definite,

bias of T̂11 also decreases quickly to near 0. There is no clear relationship between the

coverage of 95% confidence interval for β1 and the number of studies, although only the

largest sample of 500 studies has the correct coverage.

5. Application

In this application we use data from the base year of the High School Longitudinal Study of

2009 (HSLS:09) (Ingels et al., 2011). HSLS:09 is a nationally representative, longitudinal

study of more than 21,000 9th graders in 944 schools who will be followed through their

secondary and postsecondary years. We are interested in testing whether sex, socio-

economic status and sex by socio-economic status interaction are predictive of the

mathematics standardized theta score. We estimate the regression coefficients in each of the

8 race groups and perform multivariate meta-analyses on the regression coefficients to

obtain the summary effect estimates.

Within each race group i, our model is

where Yij is the mathematics standardized theta score, Xij1 is the sex, Xij2 is the socio-

economic status score for student j. εij is the normally distributed error. The regression

results are summarized in Table 2.

We use both the fixed effect model and random effect models to meta-analyze the regression

coefficients from the 8 race groups. Table 3 shows the meta-analysis results. For this data,

the homogeneity test statistic Q is 54.6, which asymptotically follows a chi-square

distribution with 21 degrees of freedom under the null hypothesis of no heterogeneity. The

p-value of the homogeneity test is 8.1×10-5. Thus, the assumption of homogeneous effect

sizes for the fixed effect model is violated. Since the fixed effect model does not take

between-study variance into consideration, it greatly underestimates the covariance matrix

for the summary effect estimates, resulting in an inflated Wald test statistic for testing the
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hypotheses H0: β1 = β2 = β3 = 0 versus H1: at least one of β1, β2, β3 is not 0, where β1, β2,

β3 are the summary effect sizes for sex, socio-economic status score and sex by socio-

economic status score interaction, respectively.

Jackson’s multivariate DerSimonian and Laird’s method of moments and our method give

close results, while the restricted maximum likelihood method yields a different between-

study covariance matrix estimate. However, all three random effect methods give very close

summary effect size estimates, and the Wald test statistic reduces dramatically, compared to

that from the fixed effect model.

6. Discussion

We propose a new method of moments estimator for the between-study covariance matrix in

the random effect multivariate meta-analysis. We have shown in our simulation that our

method gives similar results as existing random effect model multivariate meta-analysis

methods. Furthermore, our method and Jackson’s multivariate DerSimonian and Laird’s

method give very close results in both simulation studies and real data analysis.

Our estimator is the first matrix form method of moments estimator for the between-study

covariance matrix in the random effect model multivariate meta-analysis. It is invariant to

linear transformations. As a non-iterative estimator, it is very easy to calculate.

Despite its long history in combining published analysis results, meta-analysis is also very

useful in multi-center or multi-ethnic studies, when different cohorts can share results from

the same analysis but it is often not feasible to share original data. Generally, the fixed effect

model is the first choice in a meta-analysis as it is easier to calculate and interpret, and it is

more powerful than random effect models. However, in the presence of heterogeneity,

results from the fixed effect model are not valid, then random effect models are preferred.

When performing the random effect meta-analysis for p effects, Jackson’s method requires

calculating p2 weighted means b̃i[j] (1 ≤ i ≤ p, 1 ≤ j ≤ p) in intermediate steps, which are not

related to corresponding fixed effect summary estimates. Specifically, the weighted means

b̃i[i] (1 ≤ i ≤ p) are the fixed effect summary estimates in univariate meta-analyses, instead of

the multivariate meta-analysis we desire. In the contrast, our method directly uses the fixed

effect summary estimates vector to calculate the between-study covariance matrix estimate.

It does not require performing p2 additional univariate meta-analyses to calculate the

intermediates.

Recently, a U-statistic based random effect model multivariate meta-analysis approach was

proposed (Ma and Mazumdar, 2011). This approach does not require the normality

assumption for the effect sizes as it is nonparametric. However, similar with Jackson’s

method, the U-statistic method also requires estimating each element of the between-study

covariance matrix separately. Future work involves the development of a matrix form

estimator for the U-statistic approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Simulation results from 1000 replicates for various numbers of studies with ,

between-study correlation 0.2 and within-study correlation 0.2. (A) Mean squared errors of

β1̂, the first summary effect estimate, and T̂11, the between-study variance estimate for the

first effect. Proportion of the between-study covariance matrix estimate lying on the

boundary of its parameter space. (B) Coverage of 95% confidence interval for β1, the first

effect size.
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