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SUMMARY

Meta-analysis is a powerful approach to combine evidence from multiple studies to make
inference about one or more parameters of interest, such as regression coefficients. The validity of
the fixed effect model meta-analysis depends on the underlying assumption that all studies in the
meta-analysis share the same effect size. In the presence of heterogeneity, the fixed effect model
incorrectly ignores the between-study variance and may yield false positive results. The random
effect model takes into account both within-study and between-study variances. It is more
conservative than the fixed effect model and should be favored in the presence of heterogeneity. In
this paper, we develop a noniterative method of moments estimator for the between-study
covariance matrix in the random effect model multivariate meta-analysis. To our knowledge, it is
the first such method of moments estimator in the matrix form. We show that our estimator is a
multivariate extension of DerSimonian and Laird’s univariate method of moments estimator, and
it is invariant to linear transformations. In the simulation study, our method performs well when
compared to existing random effect model multivariate meta-analysis approaches. We also apply
our method in the analysis of a real data example.

Keywords

Between-study covariance matrix; Heterogeneity; Method of moments estimator; Multivariate
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1. Introduction

Meta-analysis has been widely used to increase precision and power by combining studies
(Cohn and Becker, 2003). Assuming that the effect to be estimated is the same in all studies,
the fixed effect meta-analysis is often successfully used to combine the studies and obtain
the point estimate for the effect size and its standard error. However, the underlying
assumption of equal effect sizes of the fixed effect model may be violated (DerSimonian and
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Laird, 1986). Different studies may come from different populations, use different protocols
and have different levels of confounding or effect modifying variables. Thus, the studies
may not share a common effect size of interest. In the presence of heterogeneity, the fixed
effect model underestimates the standard error of the point estimate by ignoring the
between-study variance. False positive findings may be generated when the fixed effect
model is inappropriately used.

The random effect model allows both within-study and between-study variances, and is
more conservative than the fixed effect model in declaring significance of the effect size of
interest. In the presence of heterogeneity, the random effect model provides more
appropriate standard error of the point estimate and better confidence interval than the fixed
effect model. When meta-analyzing a single parameter of interest, one can estimate the
between-study variance by using the EM algorithm (Dempster et al., 1977) or other iterative
methods; a noniterative method of moments estimator has also been proposed (DerSimonian
and Laird, 1986).

Meta-analysis has also been applied to two or more correlated effect estimates (Raudenbush
et al., 1988), such as regression coefficients (Becker and Wu, 2007). Analogous to the
univariate case in which the inverse variance is used as the weight, the inverse of the
covariance matrix is the weight in the multivariate fixed effect model. Random effect
models have also been proposed to incorporate the between-study covariance matrix
(Berkey et al., 1998, van Houwelingen et al., 2002, Riley et al., 2007). However, the
iterative procedure is often computer intensive and may not reach convergence. Recently, an
extended DerSimonian and Laird’s method of moments estimator was proposed to solve the
between-study covariance matrix (Jackson et al., 2010). Though this method is a
noniterative approach, it requires calculating each element of the matrix separately, and it is
not invariant to reparametrization of effect sizes.

In this paper, we proposed a novel method of moments estimator for the between-study
covariance matrix in the multivariate meta-analysis. It is also a multivariate extension of
DerSimonian and Laird’s univariate method of moments estimator. To our knowledge, this
is the first noniterative estimator for the between-study covariance matrix in the matrix
form. It is invariant to linear transformations. We perform a simulation study to compare our
method with the restricted maximum likelihood (REML) method (Jennrich and Schluchter,
1986) and Jackson’s multivariate DerSimonian and Laird’s method. We also apply the three
random effect methods as well as the fixed effect approach to a real data example.

2. Fixed Effect Multivariate Meta-Analysis

Suppose we are interested in meta-analyzing p correlated effects from k studies. To estimate
the true effect sizes

B
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we need effect estimates and their covariance matrix from individual studies. For study i (1
< i <Kk), we denote the effect estimates

and their covariance matrix Zj.

To meta-analyze vectors by, by, ..., b and get a summary estimate, we need generalized
least squares (GLS) methods instead of ordinary least squares (OLS) methods, because the
variances of effect estimates from different studies are unequal. We first stack the k vectors
to get a long vector with length kp

by
by
b=| .

by,

Assuming that the k studies are uncorrelated, we make a blockwise diagonal matrix

> 0 - 0
0 % - 0
0 0 --- X

kpxkp

This is the covariance matrix of vector b.
We assume the following model holds:
bkpxlzwkpxp B})X1+ekpxla
where W is a stack of k identity matrices of size p x p, and we assume that the error e

follows a multivariate normal distribution with means 0 and covariance matrix Z, which is
the covariance matrix of vector b.

The fixed effect model summary estimator (Raudenbush et al., 1988, Becker and Wu, 2007)
is

B =(W's'w) 'W's 1,

with covariance estimator
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Cov(B,)=(W's~'W) ",

The null hypothesis of homogeneity

E(b))=E(by)="--=E(by)=0

can be tested using the homogeneity test statistic

Q=(b-Wpj,) 2 '(b-Wj,).

Q is a scalar. Under the null hypothesis of no heterogeneity, it asymptotically follows a chi-
square distribution with (k — 1)p degrees of freedom (Becker and Wu, 2007).

3. Random Effect Multivariate Meta-Analysis

Similarly to the fixed effect model, we assume

bk:pﬂ:wkpxp 16p><1+6k‘p><1+ek‘p><l~

We assume that the error e follows a multivariate normal distribution with means 0 and
covariance matrix . The random effect vector

01
5= 5.2

)

O

where & (1 < i < k) follows a multivariate normal distribution with means 0 and covariance
matrix T. Thus the covariance matrix of vector b is

[ >2+T 0 -+ 0 W
0 Yo4+T - 0
Qkpxkp:z]kpxkp+1k:xk ® Tp><p: . . . .
0 0 coo 24T kpkp

Zi (1 i <Kk) is the within-study covariance matrix for study i defined above, I xk is the k x
k identity matrix, T is the between-study covariance matrix. The symbol ® denotes the
Kronecker product of two matrices.

The random effect model summary estimator is
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B.=(WQ'W) Wb,

with covariance estimator

Cov(B,)=(W'Q'W) .

The crucial step for the random effect approach is to estimate the between-study covariance
matrix T. In this paper we use the following three methods. In all the methods, the values of
the covariance matrices X (1 < i < k) are fixed at the obtained study-specific estimates.

3.1 Restricted maximum likelihood method
The REML estimation can be performed by maximizing

1 1 ' 1.
L(T)= — 5log|Qf — 5log|W QW - 3" Q i,

where

r=b— W(WQ'W) "W s,
under the constraint that T is positive semi-definite (Jackson et al., 2010, Jennrich and
Schluchter, 1986).

3.2 Jackson’s multivariate DerSimonian and Laird’s method

Jackson’s multivariate DerSimonian and Laird’s method calculates each entry of T
separately (Jackson et al., 2010). Let

ok (buw ~ b)) (Bug) ~Bita)
L]

=t v D) D)

where

D) S

= u(i)
I sk 1 ?
Yu=1 D)2

u(4,5)

and byy is the ith (1 < i < p) element in the vector by (1 < u <k), Z j) is the element on row
i(l<isp)andcolumnj(l<j<p)ofZ,(l<u<k).Let
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K . ko Eu(;':,j)
E, =% wid) 2 i) Tuta)
TuE1VPuo PG S NomEL Ty ’
k s
E b 1 w(4,4) Zu(g,5)

= OTuG)  Da
u=1 /(i) Su(i.j) Timt (i) ZulG,j)

then

is the element on row i (1 <i<p) and columnj (L <j<p)of T.

While the calculation is generally faster than REML, Jackson’s method requires calculating
p2 weighted means b~im as intermediates for a p x p matrix T, and it is not invariant to
reparametrization of effect sizes.

3.3 A novel multivariate DerSimonian and Laird’s method
Let

k ~
A= 70, B, B,) ~ (k= Dl

where Zjj, bj (1 < j < k) are defined above, /9,: is the fixed effect estimate defined above. Then
E(A)=®T.

A symmetric method of moments estimator for T is

L @ TTALA' R

T=
2

See Web Appendix A for the derivation. A very nice property of our estimator is that it is
invariant to linear transformation (Web Appendix B).
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When p = 1, this estimator T is scalar and is equal to DerSimonian and Laird’s estimator
(Web Appendix C).

In the presence of heterogeneity, the homogeneity test statistic Q no longer follows a chi-
square distribution. However, its expectation is a function of the true between-study
covariance matrix T (Web Appendix D).

Since T is a covariance matrix, it should be positive semi-definite. While we can do the
maximization under the constraint that T is positive semi-definite for the REML method, we
generally have no guarantee that Jackson’s or our method of moments estimator would be
positive semi-definite, especially when heterogeneity is low. A remedy for this issue is
discussed in Web Appendix E, which we adopted in all the analyses for this paper. Jackson
et al. used the same strategy in their paper (Jackson et al., 2010).

4. Simulation

4.1 Simulation design

To compare the performance of the REML method, Jackson’s multivariate DerSimonian and
Laird’s method (MDLJ) and Chen’s multivariate DerSimonian and Laird’s method (MDLC)
developed in this paper, we conducted simulation studies in the context of bivariate meta-
analysis. We performed all the calculation and analysis in R-2.9.2 (R Development Core
Team, 2009).

We considered 10 studies with different sample sizes. 100 between-study variances were
generated from a chi-square distribution with 1 df, and values less than 0.016 or greater than
2.7 were discarded (corresponding approximately to the 10% and 90% quantiles of 1 df chi-
square distribution). Then we randomly chose 2 sets of 10 variances out of the remaining
values, sorted and paired them. The smallest pair was assigned to the first study as the
within-study variances of the two effects and so on until the largest pair was assigned to the
last study. The within-study correlation was set to 0.2 or 0.8 for all 10 studies.

We followed the procedure by Higgins and Thompson to calculate the between-study
variances (Jackson et al., 2010, Higgins and Thompson, 2002). Since the variances for both
outcomes were simulated from the same population, we first calculated the typical within-
study variance

-z /oo
2 . 7
oL =lim

2 b
nee (1 1
(el f) 2l

where 52 was generated as discussed above. For this parameter setting we have 52 =0.15.
Then we computed the between-study variances using
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2=—_Tu ____Tu
17Ty 402~ T1140.15
2—_Too ___ To
2 Taoo+02, ~ Ta22+0.15

where 72 and 12 are the proportions of marginal variation in the first and second effects due

to heterogeneity, respectively. We considered 9 scenarios, in which each of 77 and 72 was set
to 0.2, 0.5 or 0.8 to simulate low, moderate and high heterogeneity for each effect. T4 and
T, are the between-study variances for the first and second effects. The between-study
correlation was set to 0.2 or 0.8 to calculate the covariance.

For each study i (1 <i < 10), we generated the effect size vector bj from a bivariate normal
distribution with mean 0 and covariance matrix Xj + T, where % is the within-study
covariance matrix and T is the between-study covariance matrix.

4.2 Simulation results

We summarized the simulation results for between-study correlation 0.2 and within-study
correlation 0.2 in Table 1. We only presented results for the first effect and the covariance,
since the second effect shows similar results. Columns 7 — 9 show the bias, mean squared
error for the first summary effect estimator ,1?1 and 95% confidence interval coverage for the
first effect size. The confidence interval was constructed as ,31 * t9.025,9SE (,8]) (Follmann
and Proschan, 1999). Columns 10 — 13 show the bias of the between-study variance
estimator for the first effect T11 and that of the between-study covariance estimator T 15, and
their corresponding mean squared errors. Column 14 shows the proportion of the between-
study covariance matrix estimate lying on the boundary of its parameter space: either at least
one of the variance estimates is 0, or the absolute value of the correlation coefficient is 1.
Since the between-study covariance matrix after the Web Appendix E correction when
necessary is always positive semi-definite, this column also indicates the percentage of the
between-study covariance matrix not being positive definite, that is, its minimum eigenvalue
is equal to 0. To allow for rounding errors, we defined being less than 1078 as being equal to
0.

We can see from Table 1 that all three methods give very similar results, and our new
approach is closer to Jackson’s method rather than the REML. This is not surprising because
REML is a likelihood-based iterative method, while the other two are method of moments.
In all scenarios REML gives more boundary-valued between-study covariance matrix
estimates than the other non-iterative methods.

Bias fll is generally greater than 0, because we pull back negative eigenvalues to 0 when
fixing covariance matrix estimates that are not positive semi-definite, we somehow bias the
diagonal elements upwards. We can see that as the heterogeneity increases, this bias
generally decreases, and the proportion of boundary-valued between-study covariance
matrix estimates also decreases. This is consistent with our prior knowledge that fixed effect
models are usually preferred when heterogeneity is low and random effect models are more
appropriate when heterogeneity is high. Simulation results for other correlation coefficient
settings are summarized in Web Tables 1 - 3.

Biometrics. Author manuscript; available in PMC 2014 May 22.
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4.3 Additional simulation study

We performed 6 additional simulation studies to investigate the effect of the number of

studies on the results. We set 17 and 72 to be 0.5, between-study and within-study correlation
coefficients to be 0.2, and let the number of studies change from 10 to 5, 20, 50, 100, 200
and 500. Since all three methods give similar results, only results using our new method are
shown in Figure 1 and Web Table 4. As the number of studies increases, mean squared
errors of ,E?l, the summary effect estimate for the first effect, and fll, the between-study
variance estimate for the first effect decrease, which is reasonable because the large-sample
properties of estimators in a meta-analysis depend on the number of studies. As the number
of studies goes to infinity, mean squared errors converge to 0.

We can also see that as the number of studies increases, the proportion of the between-study
covariance matrix estimate lying on the boundary of its parameter space (matrix with
minimum eigenvalue 0) decreases dramatically, even though the heterogeneity is only
moderate. As we fix fewer and fewer covariance matrices that are not positive semi-definite,
bias of f11 also decreases quickly to near 0. There is no clear relationship between the
coverage of 95% confidence interval for B, and the number of studies, although only the
largest sample of 500 studies has the correct coverage.

5. Application

In this application we use data from the base year of the High School Longitudinal Study of
2009 (HSLS:09) (Ingels et al., 2011). HSLS:09 is a nationally representative, longitudinal
study of more than 21,000 9th graders in 944 schools who will be followed through their
secondary and postsecondary years. We are interested in testing whether sex, socio-
economic status and sex by socio-economic status interaction are predictive of the
mathematics standardized theta score. We estimate the regression coefficients in each of the
8 race groups and perform multivariate meta-analyses on the regression coefficients to
obtain the summary effect estimates.

Within each race group i, our model is

Yi=0io+8i1 X1+ Bi2 Xijo+8is Xij1 Xijatey

where Yjj is the mathematics standardized theta score, Xjjy is the sex, Xjjz is the socio-
economic status score for student j. &;j is the normally distributed error. The regression
results are summarized in Table 2.

We use both the fixed effect model and random effect models to meta-analyze the regression
coefficients from the 8 race groups. Table 3 shows the meta-analysis results. For this data,
the homogeneity test statistic Q is 54.6, which asymptotically follows a chi-square
distribution with 21 degrees of freedom under the null hypothesis of no heterogeneity. The
p-value of the homogeneity test is 8.1x10-°. Thus, the assumption of homogeneous effect
sizes for the fixed effect model is violated. Since the fixed effect model does not take
between-study variance into consideration, it greatly underestimates the covariance matrix
for the summary effect estimates, resulting in an inflated Wald test statistic for testing the

Biometrics. Author manuscript; available in PMC 2014 May 22.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chenetal.

Page 10

hypotheses Ho: B1 = B> = 53 = 0 versus Hy: at least one of 81, B, B3 is not 0, where Sy, 5,
Bs are the summary effect sizes for sex, socio-economic status score and sex by socio-
economic status score interaction, respectively.

Jackson’s multivariate DerSimonian and Laird’s method of moments and our method give
close results, while the restricted maximum likelihood method yields a different between-
study covariance matrix estimate. However, all three random effect methods give very close
summary effect size estimates, and the Wald test statistic reduces dramatically, compared to
that from the fixed effect model.

6. Discussion

We propose a new method of moments estimator for the between-study covariance matrix in
the random effect multivariate meta-analysis. We have shown in our simulation that our
method gives similar results as existing random effect model multivariate meta-analysis
methods. Furthermore, our method and Jackson’s multivariate DerSimonian and Laird’s
method give very close results in both simulation studies and real data analysis.

Our estimator is the first matrix form method of moments estimator for the between-study
covariance matrix in the random effect model multivariate meta-analysis. It is invariant to
linear transformations. As a non-iterative estimator, it is very easy to calculate.

Despite its long history in combining published analysis results, meta-analysis is also very
useful in multi-center or multi-ethnic studies, when different cohorts can share results from
the same analysis but it is often not feasible to share original data. Generally, the fixed effect
model is the first choice in a meta-analysis as it is easier to calculate and interpret, and it is
more powerful than random effect models. However, in the presence of heterogeneity,
results from the fixed effect model are not valid, then random effect models are preferred.
When performing the random effect meta-analysis for p effects, Jackson’s method requires
calculating p? weighted means b~i[i] (1<i<p,1<j<p)inintermediate steps, which are not
related to corresponding fixed effect summary estimates. Specifically, the weighted means
b~i[i] (1 <i<p) are the fixed effect summary estimates in univariate meta-analyses, instead of
the multivariate meta-analysis we desire. In the contrast, our method directly uses the fixed
effect summary estimates vector to calculate the between-study covariance matrix estimate.
It does not require performing p? additional univariate meta-analyses to calculate the
intermediates.

Recently, a U-statistic based random effect model multivariate meta-analysis approach was
proposed (Ma and Mazumdar, 2011). This approach does not require the normality
assumption for the effect sizes as it is nonparametric. However, similar with Jackson’s
method, the U-statistic method also requires estimating each element of the between-study
covariance matrix separately. Future work involves the development of a matrix form
estimator for the U-statistic approach.

Supplementary Material
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Simulation results from 1000 replicates for various numbers of studies with [12:[22:0,5,
between-study correlation 0.2 and within-study correlation 0.2. (A) Mean squared errors of
ﬁ], the first summary effect estimate, and fll, the between-study variance estimate for the
first effect. Proportion of the between-study covariance matrix estimate lying on the
boundary of its parameter space. (B) Coverage of 95% confidence interval for gy, the first

effect size.
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